

Wesley Burghardt

Department of Chemical & Biological Engineering

Northwestern University

Outline

- Motivation
- Scattering fundamentals
- X-ray scattering in shear
 - Characterization of orientation
 - Experimental aspects
 - Case studies
 - Liquid crystalline polymers
 - Block copolymers
 - Nanocomposites
- Processing
- Extensional Flow

Motivation: Polymer structure under flow

- As a rheologist...
 - Seek to understand microscopic origins of non-Newtonian flow behavior
- As a physicist...
 - Structural response to applied fields opens window into molecular/microstructural dynamics
- As a materials scientist...
 - Organization of materials by applied flow can facilitate characterization, produce anisotropic microstructures
- As an engineer...
 - Impact of processing on final product properties

Possible approaches

- Microscopy: Real-space imaging
 - Typically only optical microscopy applied to flow
 - Examples: DNA visualization; colloidal dispersions
- Polarimetry: 'Rheo-optics'
 - Flow birefringence, dichroism
- Scattering: Reciprocal space
 - Light, neutron & x-ray scattering have all been applied to study structure of complex fluids during shear
 - Essential phenomena:
 - Interaction of incident radiation with sample
 - Constructive/destructive interference of radiation scattered from different locations within material

Interference: double slit expt

Recall from physics

- different path lengths from light arriving from different slits
- phase difference
- constructive/destructive interference
- fringe pattern

For successive bright fringes,

$$\sin\theta = \frac{m\lambda}{d}$$

Comments

- Observation of interference pattern allows one to determine slit spacing
- Smaller spacing of slits --> larger angles needed to accumulate significant phase difference & interference

Scattering & interference

Scattering geometry

Measure intensity of scattered radiation as function of scattering angle

Scattered beam

Interference calculation: Two points O & P

Path dif. =
$$\overline{QP} - \overline{OR}$$

= $\mathbf{S_0} \cdot \mathbf{r} - \mathbf{S} \cdot \mathbf{r}$

Phase dif. =
$$\frac{2\pi}{\lambda} (\mathbf{S_0} \cdot \mathbf{r} - \mathbf{S} \cdot \mathbf{r})$$

= $-\frac{2\pi}{\lambda} (\mathbf{S} - \mathbf{S_0}) \cdot \mathbf{r}$

Scattering vector
$$\stackrel{=}{\longrightarrow} q$$

Scattered amplitude

- Add up scattering contributions from each part of sample
- Allow for interference using phase factor computed above

$$A(\mathbf{q}) = \int_{V} \rho(\mathbf{r}) e^{-i\mathbf{q} \cdot \mathbf{r}} d\mathbf{r}$$

$$I(\mathbf{q}) = |A(\mathbf{q})|^{2}$$
Phase factor

Scattering power'

(e.g. electron density

for x-rays)

- 3-D Fourier transform
- Maps 3-D real-space structure into 3-D 'reciprocal' space

Scattering vector & reciprocal space

$$\mathbf{q} = \frac{2\pi}{\lambda} (\mathbf{S} - \mathbf{S_0})$$

$$q = |\mathbf{q}| = \frac{4\pi}{\lambda} \sin \theta$$

As scattering angle varies over all possible directions, tip of \mathbf{q} defines a spherical surface ('Ewald sphere'). Hard to fully characterize $I(\mathbf{q})$!

Special case: small-angle scattering

Here, **q** 'lives' roughly in the plane perpendicular to incident beam direction. Experiments sample a 'slice' of reciprocal space.

Length scales & scattering

$$A(\mathbf{q}) = \int_{V} \rho(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r}$$

Consider scattering from sphere

- If R << 1/q, then significant phase differences do not accumulate; no destructive interference
- Require qR ~ O(1) to see significant destructive interference & associated drop in scattered amplitude & intensity
- As R increases, interference sets in at progressively smaller values of q
- Small-angle scattering → larger structures

Anisotropic shapes & interference

Flow-induced structures are generally anisotropic

If scattered beam lies in 2-3 plane, object seems small; little interference until large angle (q)

If scattered beam lies in 1-3 plane, object seems big; opportunity for interference at smaller *q*

Amplitude/intensity distribution in reciprocal space:

But, in a typical scattering experiment we only see that slice of reciprocal space defined by Ewald sphere.

Schematic 2D scattering patterns

Probing reciprocal space: In situ scattering in shear flow

2-direction: 1-3 plane

3-direction: 1-2 plane

1-direction: 2-3 plane

Representation and quantification of orientation state

Orientation probability distribution function, $\psi(\mathbf{u})$

u 'lives' on unit sphere: $\psi(\beta, \phi)$

For *uniaxial* distribution of orientation, $\psi = \psi(\beta)$

For anisotropic distribution of 1-D layered objects, distribution of diffracted intensity in reciprocal space directly reflects $\psi(\mathbf{u})$.

Uniaxial orientation distribution: 'Order parameter'

$$\left\langle \cos^2 \beta \right\rangle = \int_0^{\pi/2} \cos^2 \beta \psi(\beta) \sin \beta \, d\beta$$

$$S = \frac{3 \left\langle \cos^2 \beta \right\rangle - 1}{2}$$

S = 1 for perfect orientation

S = 0 for random orientation

Idealized 2-D scattering experiment:

Fine Print #1

Due to curvature of Ewald sphere, never realize a true 2-D 'slice' of reciprocal space; cannot 'see'
 β = 0 in this type of geometry:

Burger, Hsiao & Chu, Polymer Reviews, **50**, 91 (2010)

SAXS: not a big deal, unless highly oriented

WAXS: bigger concern

One solution: progressively tilt sample; bring symmetry axis 'into view' (not practical for shear studies)

Fine print #2

- Shear flow generally does NOT produce uniaxially symmetric distributions of orientation
 - This is not apparent from 2-D patterns collected in a single 'projection' of shear flow.
 - Studying multiple projections (e.g. 1-2 + 1-3 planes)
 helps, but most of reciprocal space is still left unexplored:
 no guarantee that you won't miss something.
- What to do?
 - Exhaustive mapping of reciprocal space to construct full $\psi(\mathbf{u})$ ('pole figures')
 - Impractical for in situ studies
 - Keep limitations in mind; multiple projections where possible

'Real world' approaches to x-ray anisotropy analyses in shear

- Can simply analyze azimuthal scans using conventional order parameter analysis
 - Quantitative measure of orientation, ranges from 0 to 1
 - But, S loses its rigorous significance in relation to underlying orientation distribution function
 - Implicit assumption of uniaxial symmetry will generally be false
- Alternative metrics of orientation
 - FWHM of peaks in azimuthal scan
 - Sharper peaks: higher orientation

2nd moment tensor analyses...

2nd moment tensor analyses of shearinduced anisotropy

Azimuthal scan, $I(\beta)$

$$u_1 = \cos \beta; u_2 = \sin \beta$$

$$\langle \mathbf{u}\mathbf{u} \rangle = \begin{bmatrix} \langle u_1 u_1 \rangle & \langle u_1 u_2 \rangle \\ \langle u_1 u_2 \rangle & \langle u_2 u_2 \rangle \end{bmatrix}$$

$$\langle u_1 u_2 \rangle = \langle \cos \beta \sin \beta \rangle = \frac{\int_0^{2\pi} \cos \beta \sin \beta I(\beta) d\beta}{\int_0^{2\pi} I(\beta) d\beta}$$

Anisotropy Factor

$$AF = \sqrt{\left(\left\langle u_1 u_1 \right\rangle - \left\langle u_2 u_2 \right\rangle\right)^2 + 4\left\langle u_1 u_2 \right\rangle^2} \qquad \chi = \frac{1}{2} \tan^{-1} \left(\frac{2\left\langle u_1 u_2 \right\rangle}{\left\langle u_1 u_1 \right\rangle - \left\langle u_2 u_2 \right\rangle}\right)$$

Orientation Angle

$$\chi = \frac{1}{2} \tan^{-1} \left(\frac{2 \langle u_1 u_2 \rangle}{\langle u_1 u_1 \rangle - \langle u_2 u_2 \rangle} \right)$$

Practical considerations: Everything is easier at a synchrotron

- High flux
 - Facilitates rapid data acquisition; real-time studies
 - Detectors important, too
- Intrinsic collimation
 - High quality SAXS
- Tunable energy/ wavelength
 - Can facilitate shear cell construction

Advanced Photon Source, ANL

X-ray absorption and energy

- 'Lab' x-ray sources operate at ~ 8 keV (1.54 Å)
- APS specializes in 'hard' x-rays (higher energy)
- Consider change in absorption between 8 and

25 keV:

	10 14		· · · ·	
Flux (ph/s/0.1%BW/mrad)	10 13			
	10 12		1	
oh/s/0.1%		7 GeV,100 mA)		
Flux (1	10 10 NSLS	(2.5 GeV,500 mA)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	109 .1	1 Energy (keV)	10	100

Material	Transmission, 8 keV	Transmission, 25 keV
1 mm polycarbonate	51.8 %	96.5 %
50 µm mica	54.4 %	97.8 %
1 mm silicon	6 x 10 ⁻⁵ %	60.5 %
1 mm aluminum	2 x 10 ⁻⁴ %	63.9 %

X-ray shear cell 'window' materials

Material	X-ray Absorption	Background scattering	Mechanical strength
Kapton® (polyimide film)	Low	Faint diffraction at $q = 0.5$ Å ⁻¹ ; SAXS background	Flexible; use as supported thin film
Mica	Manageable for thin sheets	Good for both SAXS & WAXS (avoid Bragg condition)	Stiffer, but fragile; use as supported thin film
Polycarbonate	Manageable	Good for SAXS; broad amorphous scattering a problem in WAXS	Good; ease of fabrication for complex shapes (solvent?)
Silicon	Requires high energy	Negligible in WAXS (avoid Bragg condition)	Good
Aluminum	Requires high energy	Need to mask WAXD at $q \ge 2.7 \text{ Å}^{-1}$; grain structure gives SAXS at low q .	Good; ease of fabrication for complex shapes

X-ray shear cell construction: Couette (1-3 & 2-3 planes)

- Pople et al., Rev. Sci. Inst. 69, 3015 (1998)
 - Thin polycarbonate
 - 1-3 plane (radial) only
- Panine et al., Rev. Sci. Inst. 74, 2451 (2003)
 - Thin polycarbonate or aluminum (high energy only)
 - 1-3 or 2-3 planes
 - Integrated with rheometer
 - 10 170°C

X-ray shear cell construction: Rotating disk (1-3 plane)

- Frequent use of supported mica or Kapton windows
 - Solutions
 - Keates et al. Polymer, 34, 1316 (1993)
 - Hongladarom et al. Macromolecules, 29, 5346 (1996)
 - Münch and Kalus, Rev. Sci. Inst., 70, 187 (1999)
 - Melts
 - Gervat et al. Phil. Trans. Roy. Soc. Lon. A, 350, 1 (1995)
 - Ugaz and Burghardt, Macromolecules, 31, 8474 (1998)

X-ray shear cell construction: Annular cone & plate (1-2 plane)

- Caputo & Burghardt, Macromolecules, 34, 6684 (2001)
- Solutions or melts
- Steady or oscillatory

Case study 1: Liquid crystalline polymers

Rigid rod LCP sol'n; 1-3 plane:

Chem. Phys. 199, 471

(1998)

Semiflexible LCP melt; 1-3 plane:

Ugaz et al., *JOR*, **45**, 1029 (2001)

Lyotropic poly(benzyl glutamate) solution, 1-2 plane

Caputo & Burghardt, Macromolecules, 34, 6684 (2001).

Lyotropic poly(benzyl glutamate) solution, steady state orientation

- 'Tumbling' to 'shear-aligning' transition
- Macroscopically biaxial orientation state at low rates
- Sign change in angle predicted by molecular theories

Caputo & Burghardt, *Macromolecules*, 34, 6684 (2001).

Lyotropic poly(benzyl glutamate) solution, transient orientation dynamics

Thermotropic DHMS-7,9 melt Orientation development in start-up

DHMS-7,9: Known to be 'shear aligning' (Kornfield)

Clear into isotropic phase → cool into nematic phase → random 'polydomain' IC

Thermotropic DHMS-7,9 melt 'Polydomain' modeling

Ugaz et al., J. Rheol. 45, 1029 (2001)

Smectic side-chain LCP: Large-amplitude oscillatory shear

SCLCP Nomenclature:

PBSiCB5

Auad *et al.*, Macromolecules, 38, 6946 (2005) Rendon *et al.*, *Macromolecules*. **40**, 6624 (2007)

Case study 2: Block copolymers

PS-PI lamellar diblock: Inception of shear flow

- M = 20,850
- $f_{PS} = 0.49$
- ODT = 170° C
- Studied at 115°C; 1-2 plane

- Shear Rate: 0.03 s⁻¹
- Video sequence sped up by factor of 35.
 (~1 sec/strain unit)
- Flow from *right* to *left*.

PS-PI lamellar diblock: Test of 'grain rotation' model

PS-PI lamellar diblock: Multiple projections of shear

F. E. Caputo, PhD thesis

Case study 3: Polymer nanocomposites

- Organoclay in polybutene (intercalated)
- Measurements in 1-2 plane

Shear flow at 1 s⁻¹

WAXS:

SAXS:

Clay/polybutene dispersion: Steady state orientation & rheology

- Low rates ($\sim 0.01 \text{ s}^{-1}$): negligible orientation & yielding
- Orientation development with increasing shear rate
- Consistent with estimated $D_r \sim 0.003 \text{ s}^{-1}$

Clay/polybutene dispersion: Relaxation phenomena

- Low rates: not much change in either alignment or G'
- Higher rates: partial relaxation of orientation; greater changes in G'
- Similar time scales for particle relaxation & G'recovery

Multi-walled carbon nanotube dispersions

Optical microscopy & SAXS in 1-3 plane

- $L = 40 \mu \text{m}, d = 50 \text{ nm}$
- Dispersed in uncured epoxy
- 0.05 wt%
- Mixture of single tubes and aggregates
- Higher shear rates— aggregate break-up
- Associated development of SAXS anisotropy in 1-3 plane

0.05 wt% MWCNT dispersion: 1-2 plane

- Negligible anisotropy at low rates
- Increasing anisotropy with increased shear rate
- Orientation direction tends towards, but doesn't reach, flow direction at higher rates.

0.05 wt% MWCNT dispersion: Steady state orientation

[Open: 0.05 wt% Filled: 0.1 wt%]

- Higher anisotropy in 1-2 than in 1-3 plane; *not* uniaxially symmetric
- Slightly lower anisotropy, similar orientation angle for 0.1 wt% sample as compared to 0.05 wt% sample

Processing: Fiber spinning

Figure 1. Melt spinning assembly.

Poly(vinylidene fluoride) fiber spinning

SAXS (top) and WAXS (bottom) patterns collected at different positions along fiber during spinning:

67 CM	75 CM	83 CM	91CM	97CM	FINAL FIBER
			0		

10 M/MIN

Cakmak *et al.*, *J. Polym. Sci. Part B Polym. Phys.*, **31**, 371(1993)

Processing: Extrusion-fed channel flow

Cinader & Burghardt Macromolecules, 31, 9099 (1998)

Extrusion experiment

• Xydar® commercial LCP

$$\begin{bmatrix} \begin{bmatrix} 0 \\ -c \end{bmatrix} & \begin{bmatrix} -c$$

• Melt experiments at 350 C

LCP orientation in slit-contraction flow

Processing: Injection molding

Undulator Beamline 5ID-D of DND-CAT

16° trenches (on both the mold and wedge block) allow for scattered X-rays to readily exit the mold

Rendon *et al.*, *Rev. Sci. Instrum*. **80**, 043902 (2009)

X-ray injection mold tooling details

Assembled X-ray Mold & Wedge Block (side view)

Tie Bars

Rendon *et al.*, *Rev. Sci. Instrum*. **80**, 043902 (2009)

Time-resolved measurements of orientation in TLCP molding

Location along mold: 23 mm away from die entrance

Vectra A® copolyester

Molding Parameters:

Fill time = 4 sec

$$T_{melt}$$
 = 285 °C
 T_{nozzle} = 300 °C
 T_{mold} = 90 °C

Filling Direction

Data acquisition rate: 12 frames/sec Video clip slowed down by factor of 2.4

X-ray scattering of polymer melts in uniaxial extensional flow

SER Fixture

Air Heaters

Oven Air Flow Meters

X-ray Access Windows

Temperature Controllers

Stepper Motor

Summary

- X-ray scattering applied during flow & processing is a valuable tool
 - Insights into rheology; dynamics at microstructural level
 - Can access technologically relevant processing conditions
- Synchrotrons greatly facilitate such research
 - High flux: real-time data acquisition
 - High energy: facilitates design of rheo-x-ray instrumentation